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Abstract
It is shown that in a bilayer excitonic superconductor dissipative losses emerge under
transmission of the current from the source to the load. These losses are proportional to the
square of the interlayer tunneling amplitude and are independent of the value of the input
current. The case of a quantum Hall bilayer is considered. The bilayer may work as a
transmission line if the input current exceeds a certain critical value. An input current higher
than the critical one induces Josephson vortices in the bilayer. The difference in electrochemical
potentials is required to feed the load and it forces Josephson vortices to move. The state
becomes non-stationary which leads to dissipation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Among the phenomena that demonstrate bilayer electron sys-
tems in semiconductor heterostructures considerable atten-
tion is given to the superfluidity of electron–hole (e–h) pairs
with components belonging to different layers (see, for in-
stance, [1]). A flow of electron–hole pairs in the bilayer is
equivalent to two oppositely directed electrical currents in the
layers. Therefore, the superflow of such pairs is a kind of
superconductivity. For the first time the effect was consid-
ered in [2, 3] for bilayers where one layer is of electron-
type conductivity and the other layer of hole-type conductivity
(electron–hole bilayers). The next important step was the pre-
diction of the e–h superfluidity for the systems where the con-
ductivity of both layers is of the same type [4, 5]. In that case
the bilayer should be subjected to a strong magnetic field per-
pendicular to the layers. If the total filling factor of the Landau
levels is ν = 1 the number of electrons in one layer coincides
with the number of holes in the other layer (the empty states in
the lowest Landau level play the role of holes) and the Coulomb
attraction between electrons and holes results in the formation
of bound pairs. Note that the description of electron–hole pair-

ing in electron–electron bilayers in a quantized magnetic field
is close to that developed earlier for the quantum Hall electron–
hole bilayers [6–8].

The prediction [4, 5] has inspired a considerable
increase of interest in the study of this phenomenon, both
theoretically [9–17] and experimentally [18–26]. The results
of recent experimental investigations of quantum Hall bilayers
support the idea of superfluidity of e–h pairs in these
systems. In particular, in the counterflow experiments a huge
increase of longitudinal conductivity was observed [18–20].
Other important observations are a large low bias tunnel
conductivity [21], which also takes place in bilayers with a
large imbalance of filling factors [26], the Goldstone collective
mode [22], the quantized Hall drag between the layers [23], the
interlayer drag [24] and the interlayer critical supercurrent [25]
in the Corbino disc geometry. The low temperature properties
of optically generated indirect excitons in bilayers in zero
magnetic field were also studied experimentally [27, 28], and
specific features in the photoluminescence spectra accounting
for the Bose–Einstein condensation of electron–hole pairs have
been observed. A recent important contribution to this topic is
connected with the idea of using two graphene layers separated
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Figure 1. The load (a) and the loop (b) set-ups.

by a dielectric layer [29–32] instead of GaAs heterostructures.
It is expected [29] that in graphene systems in zero magnetic
field superconductivity of e–h pairs may take place at rather
high temperatures.

A superfluid state of electron–hole pairs in quantum
Hall bilayers can be considered as a state with spontaneous
interlayer phase coherence between the electrons. The
coherent phase ϕ is the phase of the order parameter for
the electron–hole pairing and the gradient of the phase ϕ

determines the value of the supercurrent in the layer (planar
supercurrent).

The bilayer system in the counterflow set-up [18–20] can
be used as a double-wire circuit that transmits the current from
the source to the load. If the transmission is provided by
superfluid e–h pairs one can expect that such a line will work
as a usual superconducting transmission line. Nevertheless,
genuine superconductivity was not achieved in the counterflow
experiments. A finite resistance can be accounted for a
disorder that results in a finite concentration of planar vortices
in the bilayer [33, 34]. But there is another principal
circumstance that may forbid genuine superconductivity in
such a transmission line. To support nonzero current in
the load circuit a difference in electrochemical potentials
between the layers is required. This difference results in
a temporal dependence of the phase ϕ. The state with the
spontaneous interlayer phase coherence emerges if the layers
are situated rather close to each other (at a distance less
than the magnetic length). Therefore, nonzero interlayer
tunneling is always present in real physical systems. At
nonzero interlayer tunneling amplitude the difference in
electrochemical potentials results in the appearance of an ac
Josephson current and the state becomes a non-stationary one.
As was shown in [35] dissipative losses emerge in the non-
stationary state. The situation is different for the loop and
for the load geometry [36]. The steady state is not possible
in the loop geometry in figure 1(b) (which corresponds to the
transmission line [18–20]) but it can be realized in the load
geometry shown in figure 1(a) under the condition that the
difference in the electrochemical potential of the layers is tuned
to zero.

a

b

Figure 2. A circuit with a stack of bilayers (a) and an equivalent
circuit with shunted bilayers (b).

The load geometry [36] is an appropriate set-up for the
observation of the superfluidity of e–h pairs but it cannot be
used for the transmission of the current from the source to
the load. In more complicated circuits, e.g. made of a stack
of bilayers, non-dissipative transmission of the energy is not
possible as well. Indeed, a bilayer with zero difference of
electrochemical potentials can be shunted at both ends without
any impact on electrical currents and voltages in external
circuits. It means that the removal of such a bilayer from the
circuit cannot change its working parameters, including the
power of losses. An example of such a shunting is shown in
figure 2. The only set-up where superfluid properties of e–
h pairs may lead to a lowering of dissipation is the system
with nonzero difference in electrochemical potentials between
the layers. While such a system is not free from dissipation,
the losses can be exponentially small. Then, the behavior of
the system is practically indistinguished from one of genuine
superconductors.

In this paper we consider dissipative processes in the
bilayer in the loop geometry and find the conditions at which
the losses are small. The state with ac Josephson and planar
supercurrents that emerges in the bilayer can be described as a
moving chain of Josephson vortices. Under such a motion two
mechanisms of dissipation come into play. They are the second
viscosity that results in dissipation in the non-stationary regime
and Joule losses caused by ac electrical fields that emerge due
to spatial and temporal variation of the interlayer voltage.

In section 2 starting from the microscopic Hamiltonian
and using the BCS-like many-particle wavefunction we derive
the stationary continuity equation. In section 3 stationary
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vortex states are considered and the problem of the lower
critical current is addressed. In section 4 the state with moving
vortices is investigated and the power of losses caused by
such a motion is computed. We find the power of losses
is proportional to the square of the tunneling amplitude and
depends nonlinearly on the resistance of the load.

2. The model

Let us consider a bilayer electron system subjected to a strong
magnetic field B perpendicular to the layers. The filling
factors of the layers satisfy the condition ν1 + ν2 = 1, where
νi = 2π�2ni , ni , are the electron densities in the layers and
� = √

h̄c/eB is the magnetic length. Implying the energy gap
between the Landau levels h̄ωc (ωc is the cyclotron frequency)
is larger than the Coulomb energy e2/ε� (ε is the dielectric
constant) we use the lowest Landau level approximation. In
this approximation the Hamiltonian of the system has the form

H = −t
∑

X

(a†
1X a2X + H.c.) + 1

2S

∑

n,n′=1,2

∑

q

Vn,n′(q)

× [ρn(q)ρn′(−q) − δnn′e− q2�2

2 ρn(0)]. (1)

Here a†
nX , anX are the creation and annihilation operators for

the electrons in the nth layer, X is the guiding center of the
orbit, S is the area of the layer, t is the interlayer tunneling
amplitude, ρn(q) = ∑

X a†
n,X+qy�2/2an,X−qy�

2/2eiqx X−q2�2/4 is
the operator for the Fourier component of the electron density
and Vn,n′(q) = (2πe2/εq) exp(−qd|n − n′|) is the Fourier
component of the Coulomb potential (d is the distance between
the layers). In what follows we consider the bilayer of a
rectangular shape (S = Lx × L y) with the planar currents
directed parallel to the x axis.

The state with the interlayer phase coherence is described
by the wavefunction

|
〉 =
∏

X

(ua†
1X + va†

2X )|0〉, (2)

where the coefficients u and v satisfy the condition |u|2 +
|v|2 = 1. The physical meaning of this function and its
applicability for a description of the superfluid state of e–h
pairs in quantum Hall bilayers was discussed in [9–11] and in a
number of further papers. Here we just recall the main points.
The function (2) can be presented in another equivalent form:

|
〉 =
∏

X

(u + va†
2X h†

1X )|vac〉, (3)

where h†
n = an is the creation operator for the hole and

the vacuum state |vac〉 is the state in which layer 1 is fully
occupied and layer 2 is empty (ν1 = 1 and ν2 = 0). It
was shown [8] that the function (2) and (3) corresponds to the
ground state of the Hamiltonian (1) in the limit d/� → 0.
One can see that the function (3) is the standard BCS form
for the exciton condensate. The exciton is thought of as an
electron in layer 2 bound to a hole in layer 1. One can show
(see, for instance, [37]) that in the first quantized language
the function (2) and (3) is reduced to the (111) Halperin

wavefunction. At finite d/� the state (2) and (3) is not the
exact ground state. Nevertheless, numerical studies show (see,
e.g., [38]) that at d/ l < 0.5 the overlap with the exact ground
state is close to 100%. For the system with given filling
factors of the layers the u–v coefficients in (2) and (3) are
u = √

ν1 and v = eiϕ√
ν2. In the absence of the interlayer

tunneling the energy of the state (2) and (3) does not depend
on the phase ϕ. In the case of spatially dependent phase
ϕ = ϕ(X) the function (2) and (3) describes the state with
nonzero counterflow electrical currents in the layers (see [9]).

The order parameter for the exciton condensate at T = 0
is

�(X) = 〈
|a2X h1X |
〉 = u∗
XvX = �0eiϕ(X), (4)

where �0 = √
ν1(1 − ν1). Due to the absence of the kinetic

energy of carriers in the Landau level the self-consistency
equation for the order parameter at T = 0 is reduced to
an algebraic equation. At nonzero temperature the equation
for the order parameter takes a self-consistent form [6, 39]
from which the temperature dependence of the order parameter
and the mean-field critical temperature can be obtained. But
due to the two-dimensional nature of the bilayer excitons
the temperature of transition into the superfluid state is
not the mean-field critical temperature, but the Berezinskii–
Kosterlitz–Thouless transition temperature TBKT ≈ πρs/2,
see [9] (the definition of the superfluid stiffness ρs is given
below).

If the gradient of the phase is small in comparison to
the inverse magnetic length, the energy of the system E =
〈
|H |
〉 can be written in the continuous approximation

E = E0 +
∫

d2r

[
1

2
ρs

(
dϕ

dx

)2

− t̃

2π�2
(cos ϕ − 1)

]
, (5)

where E0 is the energy of the ground state, t̃ = 2t�0 is the
tunneling energy and

ρs = �2
0

e2

4πε�

[√
π

2
exp

(
d2

2�2

)
erfc

(
d

�
√

2

)

×
(

1 + d2

�2

)
− d

�

]
(6)

is the energy parameter called the superfluid stiffness. The
superfluid stiffness can also be presented in a more familiar
form ρs = h̄2ns/m B , where ns is the superfluid density of
the pairs and m B is the magnetic mass of the pair (see, for
instance, [14]). One can see from (5) that at nonzero tunneling
amplitude the ground state corresponds to the phase ϕ = 0.
But it does not mean the fixation of the phase and the absence
of electrical currents. It means that the planar current should
be accompanied by the interlayer current.

Varying the energy (5) with respect to the phase and
equating the result to zero we obtain the equation

− eρs

h̄

d2ϕ

dx2
+ e

h̄

t̃

2π�2
sin ϕ = 0. (7)

The first term in equation (7) is the 2D divergence of the
density of the planar supercurrent:

j1 = − j2 = −eρs

h̄

dϕ

dx
. (8)
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The expression for the planar current can be obtained from the
gauge invariance arguments (see [15, 40]).

Thus, equation (7) is nothing more than the stationary
continuity equation

d j1
dx

+ I1→2 = 0, (9)

where

I1→2 = e

h̄

t̃

2π�2
sin ϕ (10)

is the density of the interlayer supercurrent flowing from layer
1 to layer 2.

The coherent electrical current between the layers
corresponds to nonzero ϕ, in a close analogy to the Josephson
effect between two bulk superconductors. The difference is
that ϕ is the phase of a given condensate, but not the phase
difference for two condensates.

Equation (7) can be presented in the form

d2ϕ

dx2
= 1

λ2
sin ϕ, (11)

where λ = �
√

2πρs/t̃ is the Josephson length. As follows from
equation (11), the gradient of the phase is of the order of λ−1.
Therefore, the continuity approximation (5) requires λ 	 �.
This inequality is fulfilled if the tunneling amplitude t is much
smaller than the Coulomb energy e2/ε� and the filling factor ν

is not very close to zero.

3. Stationary vortex state and lower input critical
current

The problem of the lower critical current was already discussed
in a number of papers [12, 15, 41]. Here we revisit this question
again with the aim of giving a more accurate definition of
the lower critical current and to clarify some discrepancies
in [12, 15, 41].

Let us consider the following situation. A fixed input
current from a source is entered into one layer in a given
(source) end of the system. There is no difference between
the electrochemical potentials of the layers and the stationary
state is realized. The current withdrawn from the adjacent
layer at the same end is equal to the input current. The values
of the output and input currents at the opposite (load) end
are also equal to each other but, in general, they may differ
from the currents at the source end. For instance, such a
situation corresponds to the load geometry [36] (then all input
and output currents are equal to one another). In the loop
geometry the stationary state can be realized if the load has zero
resistance (superconducting load), or if an additional source
in the load circuit provides zero difference in electrochemical
potentials between the layers.

Depending on the values of the input currents two
qualitatively different stationary current patterns can emerge:
either the planar and interlayer currents are nonzero in the
whole bilayer, or the currents decrease exponentially with the
distance from the ends and there is no current in the internal
part of the bilayer. We define the lower critical input current as

the current at which the switching between these two regimes
occurs. If the input currents at both ends are lower than the
critical one the second pattern is realized and the interior part
of the bilayer is not involved in the transmission of the current
(the cutting of the bilayer does not change currents in the outer
circuits). If one or both input currents exceed jc the first pattern
emerges.

Let us switch to the quantitative analysis. Equation (11)
coincides in form with the equation of motion for a nonlinear
pendulum:

d2ϕ

dt2
= ω2

0 sin ϕ, (12)

where ω0 is the resonant frequency of the pendulum and ϕ

is the angle coordinate counted from the unstable equilibrium
point. The formal coincidence of equations (11) and (12)
allows us to describe the stationary states in the bilayer basing
on the known behavior of a nonlinear pendulum.

Depending on the energy, the pendulum oscillates,
completes a full revolution in infinite time, or rotates. The
maximum angular velocity ωm of the pendulum (velocity at
ϕ = π ) is proportional to the square root of the energy and
it increases if one switches from the oscillating to the rotating
regime. For the full revolution in infinite time the maximum
angular velocity ωm = 2ω0.

The time-dependent angular velocity in the pendulum
problem corresponds to the space-dependent planar supercur-
rent in the bilayer problem. The counterpart of the full revolu-
tion regime is a state with one Josephson vortex. In this state
the planar and the interlayer supercurrents are given by the ex-
pressions

j1 = − j2 = jcsech

(
x − x0

λ

)
,

I1→2 = jc
λ

sech

(
x − x0

λ

)
tanh

(
x − x0

λ

)
,

(13)

where x0 is the vortex center and

jc = eρs

h̄

2

λ
(14)

is the maximum value of the planar supercurrent in the single
vortex state (it is reached at the center of the vortex). Note that
equation (14) can be obtained directly from equation (8) under
accounting for the correspondences (dϕ/dx)max ⇔ ωm = 2ω0

and ω0 ⇔ 1/λ.
The counterpart of the rotation regime is the state with

many equally distanced Josephson vortices with the same sign
of vorticity. The supercurrents in this state are

j1 = − j2 = jc√
η

dn

(
x

λ
√

η
, η

)
,

I1→2 = jc
λ

sn

(
x

λ
√

η
, η

)
cn

(
x

λ
√

η
, η

)
.

(15)

The analog of the oscillating motion of the pendulum is
the multivortex state with vortices of alternating vorticity:

j1 = − j2 = jc
√

ηcn
( x

λ
, η

)
,

I1→2 = jc
√

η

λ
dn

( x

λ
, η

)
sn

( x

λ
, η

)
.

(16)
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In equations (15) and (16) dn(u, η), cn(u, η) and sn(u, η) are
the Jacobi elliptic functions and the parameter η belongs to the
interval (0, 1).

The boundary condition for the bilayer problem is the
condition on the gradients of the phase. This condition alone
does not determine a unique current state. The system chooses
the state that, at given input currents, has the lowest energy.
Direct calculation shows that the energies of the multivortex
state (15) and (16) are both higher than the energy of the single
vortex state (13). It is an obvious result since the energy of any
multivortex state is proportional to the number of vortices.

Here we should emphasize the difference between the
pendulum problem and the bilayer problem. The energy of
the pendulum is the integral of motion of equation (12), while
the bilayer energy (5) is not the first integral of equation (11).
Therefore, the analogy between these two problems fails if one
analyzes the energies of different states.

One can see that the planar supercurrent may exceed jc

only in the state (15). Therefore, if the input current jin is
higher than jc the multivortex state (15) is realized. The
parameter η is determined by the conditional minimum of
energy and it is equal to η = ( jc/jin)2. The density of the
Josephson vortices increases under an increase of the input
current.

If the input current is smaller than jc the state with one
incomplete vortex centered outside the bilayer satisfies the
boundary condition and corresponds to the minimum of energy.
Thus, the state realized at jin � jc is the state with zero
supercurrents inside the bilayer.

The vortex state with alternating vorticities (16) is not
realized in the bilayers. It may satisfy the boundary conditions
only at jin < jc, but its energy is larger than the energy of
the state with one vortex. It contradicts the conclusion of [41],
but in [41] the first integral of equation (11) was incorrectly
identified with the energy.

Thus, the quantity (14) is just the lower input critical
current defined above.

At jin 	 jc the overlapping between the vortices is large
and the current pattern is approximated by a sum of the large
dc part and the small harmonic ac part:

ϕ ≈ π − kx − Aϕ sin kx,

j1 = − j2 ≈ jin
1 + Aϕ

(1 + Aϕ cos kx),

I1→2 ≈ e

h̄

t̃

2π�2
sin kx,

(17)

where

k = π jin

jcλK
(

j2
c

j2
in

) ≈ 2 jin
jcλ

, Aϕ = j 2
c

4 j 2
in

.

Here K (η) is the complete elliptic integral of the first kind.
To conclude this section we note that at small input current

(lower than jc) the tunneling provides shunting of the bilayer
at both ends. It means that the load geometry experiments
proposed in [36] for the observation of e–h superfluidity should
be done at large currents.

4. Vortex motion and dissipation

As was already discussed in section 1, the stationary state
cannot be realized in the bilayer transmission line with nonzero
load resistance. But even in the case of non-stationary currents
inside a bilayer the currents in external circuits may remain
stationary. The latter occurs if the contacts between the layers
and the external wires average the input and output currents.

In such a situation the term ‘lower critical current’ slightly
changes its meaning. The average current depends on the
density of vortices and can be smaller than jc. But an input
current higher than the critical one is required at the beginning
of the process to induce a chain of moving vortices.

To study the non-stationary vortex state we will use the set
of equations for the phase of the order parameter ϕ and for the
local difference of the electrochemical potentials between the
layers eV , where V is the local interlayer voltage. The first
equation comes from the non-stationary continuity equation:

e
∂ ñ

∂ t
+ ∂ j s

1

∂x
+ I1→2 + ∂ j n

1

∂x
= 0. (18)

Here ñ is the excess local density of electron–hole pairs. It is
connected with the local voltage by the capacitor equation

eñ

V
= C, (19)

where

C = ε

4πd

1

1 − �
d

√
π
2

[
1 − exp

(
d2

2�2

)
erfc

(
d

�
√

2

)] (20)

is the effective capacity of the bilayer system per unit area. The
effective capacity takes into account the exchange interaction
between the layers and differs from the classical capacity by
an additional factor (the second factor in equation (20)). It can
be obtained from the dependence of the energy on the filling
factor imbalance (see, e.g., [39]). The superscripts ‘s’ and
‘n’ in equation (18) stand for the planar supercurrent and the
planar current of quasiparticles. The current of quasiparticles is
taken into account in equation (18) because it is induced by ac
planar electrical fields that emerge in the non-stationary state.
These fields are equal to E1 = −E2 = −(1/2)∂V/∂x and
the quasiparticle current can be presented in the form j (n)

1 =
−(σn/2)∂V/∂x , where σn is the quasiparticle conductivity.
We do not take into account the normal component of the
interlayer current because the normal tunneling is suppressed
due to the discreteness of the Landau levels.

The second equation for ϕ and V can be derived from the
equations of superfluid hydrodynamics [42], namely from the
equation for the superfluid velocity with dissipative terms. The
linearized version of this equation is

∂vs

∂ t
= −∇μm + ∇ [ζ3∇ · ns(vs − vn) + ζ4∇ · vn] , (21)

where μm is the chemical potential per unit mass μm = μ/m
(m is the mass of the Bose particle), ns is the superfluid density,
vn is the velocity of the normal component, and ζ3 and ζ4 are
the second viscosity parameters. To apply equation (21) for

5
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the description of the bilayer electron–hole superfluidity one
should replace the divergence of the superfluid flow in (21)
with the divergence of the planar supercurrent plus the tunnel
supercurrent: ∇(nsvs) ⇒ (1/e)(∂ j s

1/∂x+I1→2), and substitute
the difference of the electrochemical potentials instead of the
chemical potential μ ⇒ eV . Using equations (10) and (8), and
the expression for the superfluid velocity vs = −h̄∇ϕ/m (the
negative sign is because the phase ϕ describes the coherence
between the electrons), we obtain

∇
(

h̄
∂ϕ

∂ t

)
= ∇

[
eV + ζ3

m

2π�2h̄

(
2π�2ρs

∂2ϕ

∂x2
− t̃ sin ϕ

)

+ O(vn)

]
. (22)

The quantity O(vn) in equation (22) stands for the term
caused by the motion of the normal component. Below we
will neglect the O(vn) term. One can show that this term
yields the correction to the power of losses quadratic in the
dissipative coefficients, while the leading term is linear in these
coefficients. Since we are interested in the vortex solution, the
gradients in (22) can be omitted.

Thus, we obtain the following set of equations for ϕ and
V :

C
∂V

∂ t
= e

h̄
ρs

∂2ϕ

∂x2
− e

h̄

t̃

2π�2
sin ϕ + σn

2

∂2V

∂x2
, (23)

h̄
∂ϕ

∂ t
= eV + αϕ

(
2π�2ρs

∂2ϕ

∂x2
− t̃ sin ϕ

)
. (24)

The coefficient αϕ = ζ3m/2π�2h̄ in equation (24) is the
second superfluid viscosity expressed in dimensionless units
(with m = m B , the magnetic mass of the e–h pair).
Equations (23) and (24) contain two terms responsible for
the dissipation. The term proportional to σn describes the
Joule losses caused by ac quasiparticle currents and the term
proportional to αϕ describes the losses caused by the second
viscosity. The equations with the same form of dissipative
terms were used in [43]. Equation (24) was also obtained
in [44] for the electron–hole bilayers in zero magnetic field in
the ‘dirty’ limit.

The channels of dissipation caused by the second viscosity
and quasiparticle currents are present in any superfluid system,
but they do not result automatically in dissipative losses. One
can see that in the stationary regime the dissipative terms in
equations (23) and (24) equal zero. The losses appear in the
presence of additional factors. For the bilayer transmission
line the main factor is non-stationarity of the interlayer and the
planar supercurrents.

As was shown in section 3, the input current may induce
Josephson vortices in the bilayer system. At nonzero difference
of the electrochemical potentials the vortices begin to move
from the source to the load. Neglecting for a moment the
dissipative terms we obtain from equations (23) and (24) the
following equation for the phase:

∂2ϕ

∂ξ 2
− ∂2ϕ

∂τ 2
= sin ϕ, (25)

where the dimensionless variables ξ = x/λ and τ = t/τ0

(τ0 = (h̄�/e)
√

2πC/t̃) are used. Equation (25) has the
solution ϕ(ξ, τ ) = φ(ξ − βτ), where β 
= 1 and φ(u) satisfy
the equation

∂2φ

∂u2
= 1

1 − β2
sin φ (26)

which up to the notations coincides with equation (11). Using
the results of section 3 we obtain the following expression for
the planar current and for the interlayer voltage:

j s
1(x, t) = 2e

h̄
ρskdn(kx − ωt, η), (27)

V (x, t) = 2h̄ω

e
dn(kx − ωt, η), (28)

where

k = 1

λ
√

η|1 − β2| , ω = β

τ0

√
η|1 − β2| . (29)

Equation (27) describes the moving vortex lattice. The
velocity of motion is

uv = ω

k
= e2

h̄2
ρs

〈V 〉
〈 j s

1〉
= e2ρs RL y

h̄2
. (30)

Here and below 〈· · ·〉 means the time average. In equation (30)
R is the resistance of the load (we imply Ohm’s law 〈V 〉 =
RL y〈 j s

1〉 for the load circuit). One can see that the vortex
velocity is proportional to the load resistance and does not
depend on the input current. The parameter β = uvτ0/λ is
also proportional to the load resistance.

Let us switch to the case of small but nonzero dissipation.
The power of losses can be obtained from the common
expression for the Joule losses:

�P = L y

〈∫ Lx

0
dx

[
I1→2V + ( j s

1 + j n
1 )

(
−∂V

∂x

)]〉
. (31)

Integrating (31) by parts and taking into account the continuity
equation (18) we obtain the obvious result that the power of
losses is the input power minus the output power:

�P = ( jin − jout)V0 L y . (32)

Here jout is the output planar current and V0 is the voltage in
the output circuit (which coincides with the voltage applied to
the bilayer system at the input end). In deriving (32) we take
into account that 〈V (∂V/∂ t)〉 = 0 for any function V (x, t)
periodic in t .

The difference between the input and the output average
currents emerges if the average value of the interlayer current
Ī = 〈I1→2〉 differs from zero. In what follows we consider the
case where the power of losses is much smaller than the input
power. In this case one can neglect the dependence of Ī on x
and approximate the difference jin − jout as jin − jout = Lx Ī .
Then the power of losses is

�P = Ī V0S. (33)
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The quantity Ī can be found from the solutions of
equations (23) and (24). Here we consider the case of large
input current jin 	 jc. In this case one can seek for a solution
of equations (23) and (24) in the following form:

ϕ(x, t) = ωt −kx + Aϕ sin(ωt −kx)+Bϕ cos(ωt −kx), (34)

V (x, t) = V0 (1 + AV sin(ωt − kx) + BV cos(ωt − kx)) ,

(35)
where ω = eV0/h̄ and the quantity k is connected with the
planar supercurrent by the relation 〈 j s

1〉 = eρsk/h̄. Substituting
equations (34) and (35) into equations (23) and (24) and
neglecting the terms quadratic in t̃ we obtain the coefficients
Aϕ , Bϕ , AV and BV in the leading order in t̃ :

Aϕ = − t̃

2π�2k2ρs

{
(1 − β2 + 2π�2k2αϕσ̃ )(1 + 2π�2k2αϕσ̃ )

+ αϕ

V0

VC

(
αϕ

V0

VC
+ σ̃

V0

Vρ

)}
{D}−1, (36)

Bϕ = t̃

2π�2k2ρs

σ̃ V0
Vρ

(
1 + 2π�2k2αϕσ̃

) + αϕ
V0
VC

β2

D
, (37)

AV = − t̃

2π�2k2ρs

αϕ
V0
VC

+ σ̃ V0
Vρ

D
, (38)

BV = − t̃

2π�2k2ρs

1 + 2π�2k2αϕσ̃ − β2

D
, (39)

where

D = (1 − β2 + 2π�2k2αϕσ̃ )2 +
(

αϕ

V0

VC
+ σ̃

V0

Vρ

)2

, (40)

and the following notations are used:

β2 = CV 2
0

ρsk2
, VC = e

2π�2C
, Vρ = ρs

e
,

σ̃ = σnh̄

2e2
.

(41)

Note the equivalence of β in (41) and the definition of β given
above.

One can see that at t̃ = 0 all the coefficients Aϕ , Bϕ , AV

and BV are equal to zero, which reflects the absence of vortices
in the bilayers with zero interlayer tunneling.

Using equations (10) and (34) one finds the average value
of the interlayer current:

Ī = et̃

2π�2h̄
〈sin ϕ〉 ≈ et̃

4π�2h̄
Bϕ. (42)

Since Bϕ is proportional to t̃ the average interlayer current
is proportional to the square of the matrix element of the
interlayer tunneling. The higher-order corrections to Bϕ yield
the contributions ∝t̃3 to Ī . Therefore, for obtaining the power
of losses in the leading order it is enough to use the linear in t̃
approximation for the phase.

Using equations (42) and (37) we obtain the following
expression for the power of losses:

�P

S
= t̃2

4π�2h̄
F

(
R

R0

)
(43)

where

F

(
R

R0

)
=

{
σ̃

VC

Vρ

(
R

R0

)2

+ αϕ

(
R

R0

)4}

×
{(

1 −
(

R

R0

)2

+ 2παϕσ̃

(
j̄

j0

)2)2

+ 2π

(
R

R0

)2 (
j̄

j0

)2
Vρ

VC

(
αϕ + σ̃

VC

Vρ

)2}−1

. (44)

Here j0 = eρs/h̄� ( j0 	 jc) is the current of the order of
the higher critical current [15] (the current above which the
superfluid state is destroyed). The quantity R0 = h̄/eL y

√
ρsC

is the resonant load resistance. One can see that dissipative
losses increase considerably as R approaches to R0 (the
condition R = R0 is equivalent to β = 1). We emphasize
that the approximation solution (34) and the answer (44) are
not valid in a resonant case and at R ≈ R0 they describe the
situation only qualitatively.

Under obtaining equation (33) we take into account the
relation 〈 j s

1〉 = j̄ = e
h̄ ρsk and Ohm’s law V0 ≈ Rl L y j̄ in

the load circuit. In equation (44) the terms in the denominator
quadratic in dissipative coefficients are omitted.

Thus we conclude that the power of losses is proportional
to the square of the tunneling amplitude and depends
nonlinearly on the load resistance. At small load resistance
R � R0 the dissipation is connected in the main part with the
conductivity of quasiparticles. It is proportional to the square
of the load resistance:

�P

S
≈ t̃2

4π�2h̄
σ̃

(
R

R0

)2 VC

Vρ

(45)

and vanishes at R = 0. At large load resistance R 	 R0

the main contribution to the power of losses comes from the
second viscosity. The power of losses at large R approaches
the constant value

�P

S
≈ t̃2

4π�2h̄
αϕ. (46)

The resonant resistance R0 does not depend on the tunneling
amplitude but it can be tuned by a change of d/� (it is the
increasing function of that parameter). At d/� = 1 the
resonant resistance is approximated as

R0 ≈ h

e2

2

�0

�

L y
. (47)

At low load resistance the ‘bottleneck’ of the load circuit is the
contacts where the interlayer phase coherence is broken. We
evaluate from (47) that at longitudinal resistivity of the layer
ρxx = 1 k� the resistance of the arm R ∼ R0 corresponds to
the length of contacts ∼102� ≈ 1 μm. Since it is a rather small
length we conclude that the experimental situation corresponds
most probably to the case R 	 R0.

In conclusion we note that in the non-resonant regime the
power of losses does not depend on the input current. Since the
input power is proportional to the input current, the efficiency
factor increases under an increase of the input current.
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5. Conclusion

We have shown that in the bilayer system with superfluid
electron–hole pairs the dissipation appears under the transmis-
sion of the current from the source to the load. The effect is
connected to that the electrical currents inside the bilayer be-
come non-stationary at nonzero difference of the electrochem-
ical potentials between the layers.

The non-stationary state can be interpreted as the state
with moving Josephson vortices. It is well known that in type-
II superconductors the motion of quantum vortices results in
dissipation, but the latter can be eliminated by pinning of the
vortices. In this connection one can think that the pinning
may also suppress the dissipation in the bilayers. But it is not
true. The difference between type-II superconductors and the
bilayers is the following. In type-II superconductors nonzero
voltage along the direction of the supercurrent emerges due to
the vortex motion. In the bilayers nonzero interlayer voltage is
required to support electrical current in the load circuit and this
voltage causes the motion of Josephson vortices. The state is
stationary only at zero interlayer voltage at which there is no
current in the load circuit.

One can also arrive at this conclusion in another way. The
energy of a single vortex is

Ev = 4L y

�

√
2

π

√
ρs t̃ . (48)

According to equation (48) the pinning may occur due to
spatial variation of the tunneling amplitude. In the latter case
an approximate solution for the phase can be found by the same
way as was done in section 4. The only difference is that the
coefficients Aϕ , Bϕ in equation (34) should be replaced with x-
dependent quantities. The solution equation (34) with spatially
dependent amplitudes Aϕ and Bϕ also corresponds to a non-
stationary state. It differs from the state described in section 4
in that the phase remains non-stationary in any reference frame,
including the frame in which the vortices are at rest. One can
show that in this case the dissipative losses are also nonzero
and proportional to dissipative coefficients αϕ and σ̃ .

Thus, nonzero interlayer tunneling results in that the
electron–hole pairs in the bilayer cannot transmit electrical
energy without dissipation. Nevertheless, since the power of
losses is proportional to the square of the tunneling amplitude
and this amplitude depends exponentially on the interlayer
distance one can expect that it is possible to create bilayer
systems with negligibly small dissipation.
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